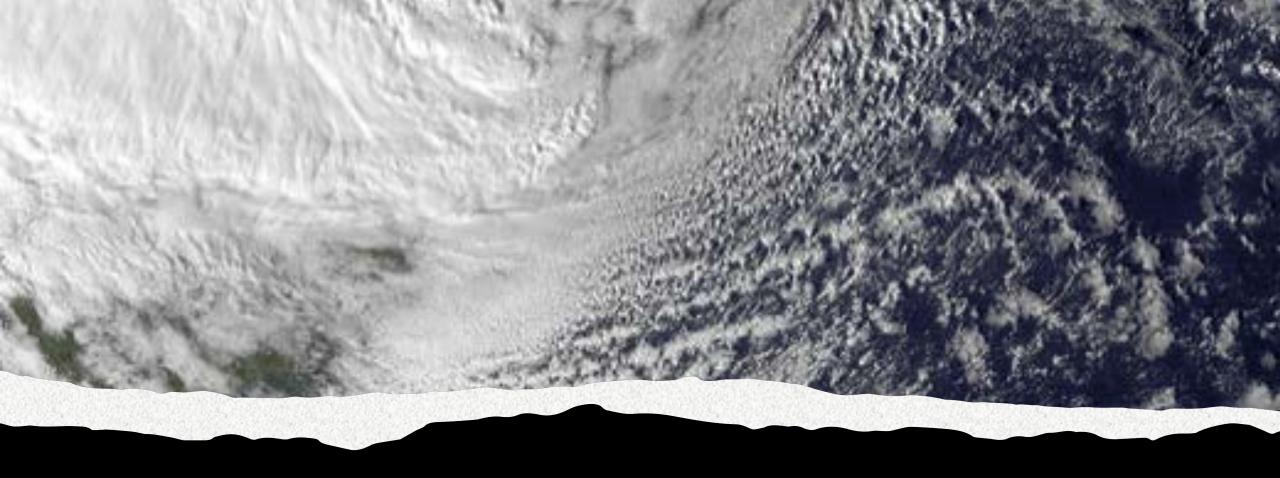
Patient Outcomes, Inpatient Costs, and Hospital Performance During a Disaster: Implications for the Nurse Licensure Compact

Jeannie P. Cimiotti, PhD, RN, FAAN

Associate Professor

Nell Hodgson Woodruff School of Nursing


NCSBN Scientific Symposium – March 22, 2021

Background

- The U.S has seen an increase in the number of life-threatening storms possibly due to climate change
- 2020: 25 named storms and six major hurricanes, more than double the 1981-2010 averages
- Severe storms disrupt activities of daily living across communities and age groups
- Little is known about storms and other natural disasters and their impact on the delivery of health care services

Hurricane Sandy Timeline

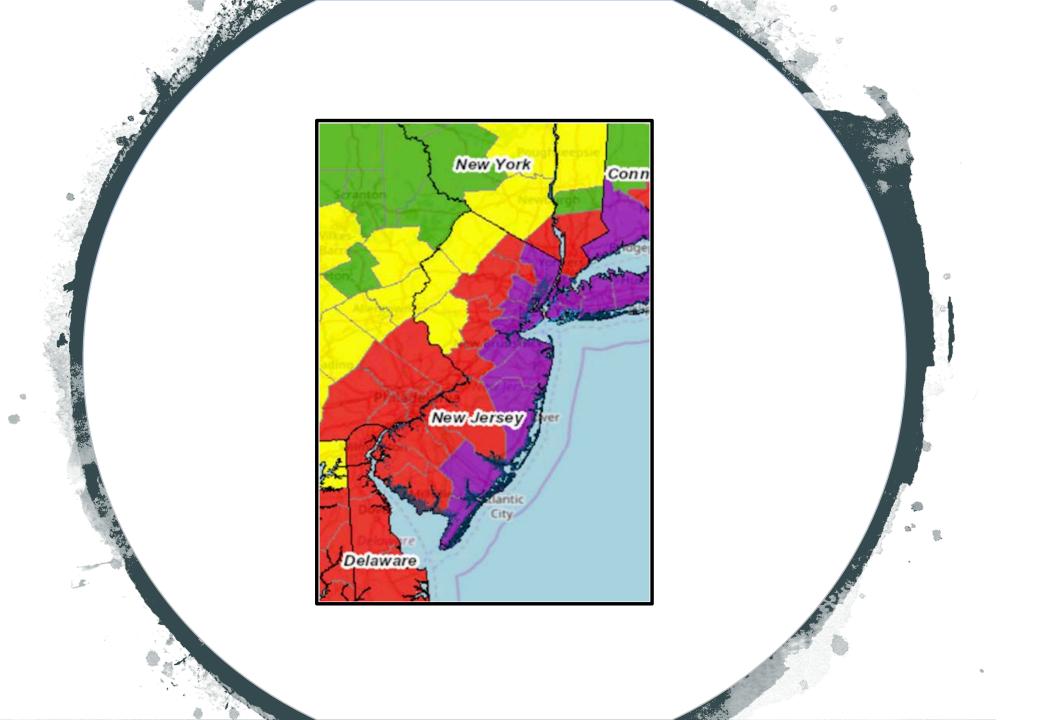
- 10/22: Sandy begins as a tropical storm in the Caribbean Sea.
- 10/24: Sandy Category 1 hurricane hits Jamaica winds of 80 mph.
- 10/25: Sandy Category 2 hits Cuba w 105 mph winds, then Haiti and Bahamas, killing 54 in Haiti, 11 in the DR, and two in Bahamas.
- 10/26-27: Sandy alternates between Category 1 hurricane and a tropical storm, then returns to Category 1.
- 10/28: Category 1, Sandy moves parallel to GA, SC, and NC.
- 10/29: Sandy approaches the East Coast of U.S. as Category 2, then weakens to post-tropical cyclone.

October 29th 2012

Hurricane Sandy

Hurricane Sandy Timeline

- 2:30 p.m.: Sandy w high winds rain from D.C., northward.
- 8 p.m.: Sandy comes ashore Atlantic City, NJ, w hurricane-force winds of 90 mph. In combination with a full moon and high tide, a 14-foot wave surge in NY Harbor tops the seawall in lower Manhattan and floods parts of NY subway system and a crucial tunnel.



NJ Counties and Storm Severity (n = 21)

Storm Severity*	County
Very High Areas:	Atlantic, Ocean, Monmouth, Middlesex,
>10,000 people exposed to surge	Union, Essex, Bergen, Hudson, Cape May
High Areas:	Cumberland, Salem, Gloucester, Camden,
5000-10,000 people exposed to surge;	Burlington, Mercer, Somerset, Morris, Passaic
or >\$100 million in wind damage;	
or > 8" of rain	
Moderate Areas:	Sussex, Warren, Hunterdon,
100-500 people exposed to surge;	
or \$10-100 million in wind damage;	
or 4-8" of rain	

^{*}adapted from the Federal Emergency Management Agency Hurricane Sandy Impact Analysis

Study Aims

- Determine if supply of nurses in the hospitals of NJ were able to meet patient needs during Hurricane Sandy; and
- Determine if patient outcomes could have been improved if additional nurses from other states were able to practice in storm surge areas.

Methods

- Design: Cross-sectional analysis of secondary data
- Data 4th quarter of 2011 and 2012:
 - HCUP/AHRQ State Inpatient Databases
 - Patient characteristics
 - American Hospital Association Annual Survey
 - Hospital characteristics
 - New Jersey Department of Health
 - Nurse staffing
- Sample:
 - 66/72 NJ acute care hospitals w sufficient data on nurse staffing

Variables and Measures

- Hospital characteristics (n = 66)
 - Bed size, teaching status, high-technology, Magnet, safety-net
- Nurse staffing: FTEs and patient to nurse ratio
- Unit types: ICU and non-ICU
- Patients (n = 87,701)
 - Demographics, comorbidities, admit unit type, admission & discharge month
- Patient outcomes
 - Transfer status, mortality, readmission, length of stay

Statistical Analysis

- Descriptive
 - Means and standard deviations, numbers and percentages
- Inferential statistics
 - Univariate and multivariate linear and logistic regression
- Projected nurse staffing
 - Observed expected FTEs*

^{*}Based on the work of Spetz (2015). Forecasts of the Registered Nurse Workforce in California

Hospital Characteristics by Storm Impact Area (n = 72)

	Very High Area	High Area	Moderate Area
	(n = 39)	(n = 23)	(n = 4)
Bed size			
<100	0 (0.0%)	2 (9%)	0 (0%)
101-250	13 (33%)	7 (30%)	4 (100%)
>=251	26 (67%)	14 (61%)	0 (0%)
Teaching hospital	24 (62%)	14 (61%)	2 (50%)
High technology	18 (85%)	18 (78%)	3 (75%)
Safety-net	11 (28%)	7 (30%)	0 (0%)
Magnet hospital	17 (44%)	8 (35%)	1 (25%)

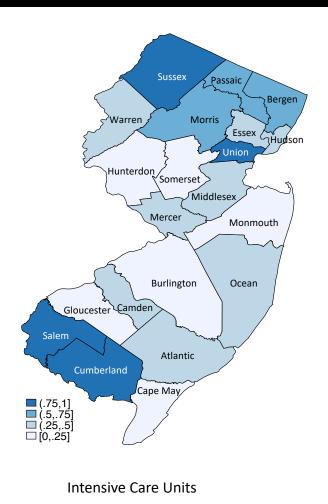
Patient Characteristics (n = 87,701)

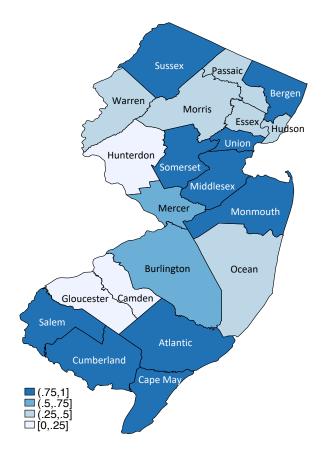
Age at admission (years)	50 (28)
Sex	
Female	50184 (57%)
Male	37517 (43%)
Race	
White	53518 (62%)
African American	14997 (17%)
Other	17786 (21%)
Ethnicity	
Hispanic	10811 (13%)
Non-Hispanic	75490 (87%)
Median household Income:	
Quartile 1: 0 - 25 th	11608 (13%)
Quartile 2: 26 th – 50 th	11903 (14%)
Quartile 3: 51 st – 75 th	19796 (23%)
Quartile 4: 76 th – 100 th	43552 (50%)

Nurse Staffing by Unit Type and Quarter 2012

5	Qua	Quarter 3		Quarter 4		Differences	
	Mean	Range	Mean	Range	Mean	<i>p</i> -value	
Intensive care	1.93	1.2 - 2.6	2.02	1.3 - 4.7	-0.08	0.17	
Intermediate	3.49	1.4 - 6.0	4.00	0.8 - 6.0	-0.01	0.97	
Medical-Surgical	4.44	2.6 - 8.3	4.40	2.0 - 6.4	0.03	0.85	
Overall	3.26	2.3 - 5.0	3.28	2.3 - 4.8	-0.02	0.83	

Patient Outcomes, 4th Quarter 2012


Length of stay	4.9 (5.6)
Readmission	3381 (6%)
Died	1755 (2%)


Multivariate Analyses Nurse Workload and Patient Outcomes, 4th Quarter 2012 (n = 84,431)

	Transferred out	Mortality	Readmission	Length of Stay
Intensive care	0.18**	-0.18	-1.60***	-0.36
Intermediate	0.07***	-0.05	-0.73***	0.07**
Medical-surgical	-0.03*	-0.02	-0.19***	-0.02
Composite	0.05	-0.07	-0.57***	0.02

^{*&}lt;0.05, **= 0.00, *** = <0.0001

Estimated Shortage of RN FTEs by County: NJ 4th Quarter 2012

Non-Intensive Care Units

20% increase of RN FTEs was estimated to alleviate the shortage

Limitations

- Nurse data are based on monthly staffing levels and reported quarterly; and we acknowledge that data at a more granular level such as monthly, weekly, or daily might have been more informative
- Nurse data were reported as number of patients per RN and lacked details on nurse employment status (FT, PT, per-diem, supplemental)
- Our findings might not be generalizable to hospitals in other states or during other disasters

Conclusion

- Our estimates show that the supply of NJ RNs was not sufficient to meet the demand for patient care during Hurricane Sandy.
- Significant association between RN staffing and patient outcomes
- States need to be proactive in an effort to ensure an adequate and flexible nurse workforce
- The nurse licensure compact is a model that should be adopted by states nationwide to ensure a sufficient supply of nurses during a disaster.

Acknowledgements

- Yin Li, PhD, Assistant Professor Emory University
- Jason Hockenberry, PhD, Professor Yale University
- NCSBN for their ongoing support of the nursing profession through practice, regulation, and research